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Abstract 

This paper describes a methodology for the extraction of a linear time invariant model from a nonlinear helicopter 
model, and followed by an examination of the interactions of the Higher Harmonic Control (HHC) and the Automatic 
Flight Control System (AFCS). This new method includes an embedded harmonic analyzer inside a linear time in- 
variant model, which allows the periodicity of the helicopter response to be captured. The: coupled high-order model 
provides the needed level of dynamic fidelity to permit an analysis and optimization of the AFCS and HHC loops. 
Results of this study indicate that the closed-loop HHC system has little influence on the AFCS or on the vehicle 
handling qualities, which indicates that the AFCS does not need modification to work with the HHC system. The 
results also show that the vibration response to maneuvers must be considered during the HHC design process, which 
leads to much higher required HHC loop crossover frequencies. This research also demonstrates that the transient vi- 
bration response during maneuvers can be reduced by optimizing the closed-loop higher harmonic control laws using 
conventional control system analyses. 
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HHC feedback gain 
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X helicopter state vector 
u helicopter control vector 
Azcg 
61at piloted lateral connrnand, in 
P advance ratio 
WC crossover frequency, radlsec 
0 HHC input harmonics c damping ratio 

vertical displacement of the rotor hub, ft 
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Introduction 

Higher Harmonic Control (HHC) of a helicopter ro- 
tor has received increased attention over the last two 
decades, especially as a means of alleviating vibratory 
loads and reducing noise. Comprehensive reviews of the 
published literature on vibration reduction using HHC 
have been presented by Friedmann (Ref. 1 )  and Teves 
et al. (Ref. 2). To date, most of the studies have con- 
centrated on the HHC algorithm, and they have not ad- 
dressed the potential interactions between the HHC and 
the Automatic Flight Control System (AFCS), including 
any impact on handling qualities. The published litera- 
ture reports results of flight tests, wind tunnel tests, and 
numerical simulations with either a closed-loop HHC 
system or a closed-loop AFCS, but not with both loops 
closed simultaneously. 

Owing to the periodic nature of helicopters, HHC is a 
control system application that has developed without the 
benefit of standard control system analysis techniques. 
Without the use of these standard techniques, the appli- 
cation is placed at a relative disadvantage with respect to 
conventional control system designs. Although Floquet 
theory can be used to study such periodic systems, there 
are far more control system design theories and software 
tools that are available for linear time invariant systems 
than for periodic systems. Also, the entire portion of the 
Handling Qualities Specifications (ADS-33, Ref. 3) that 
addresses small perturbation maneuvers assumes that the 
linear model is time invariant. This exemplifies the need 
for time invariant linearized approximations that accu- 
rately model the coupled rotor-fuselage dynamics, in- 
cluding the higher harmonic response of the rotor. Such 
time invariant linearized approximation methods are not 
currently available and are a key focus of this paper. 

Traditional linearization techniques lead to a Lin- 
ear Time Periodic (LTP) system in the rotating frame. 
Typically, the HHC input is implemented in the rotat- 
ing frame. If a Multiblade Coordinate Transformation 
(MCT) of the rotor equations is followed by averaging 
to eliminate time dependency, the averaging also elimi- 
nates all the higher harmonics both in the blade controls 
and in the rotor response. If the HHC input is introduced 
in the fixed frame after the averaging, the periodicity of 
the control inputs is preserved, and the HHC input will 
force this LTP system to respond in a n/rev fashion. The 
closed-loop stability of AFCS/”C interaction can then 
be checked using the Floquet theory. This system, how- 
ever, cannot produce nhev vibration characteristics with- 
out the HHC inputs; therefore, the effects of the pilot’s 
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inputs on the vibration response cannot be correctly rep- 
resented by this linear model. 

The objective of the current study is to couple the 
flight dynamics and handling qualities disciplines to al- 
low ana!ysis of HHC and AFCS interaction. The specific 
objec tives . are: 

1. Develop and validate a method for the extraction 
of a LTI-HHC models that includes the closed-loop 
HHC system. 

2. Analyze the possibility of interactions between 
higher harmonic control and automatic flight con- 
trol systems using the: LTI-HHC model. 

3. Optimize the perforniance of the closed-loop HHC 
system using conventional control system analyses. 

Mathematical Model of the Helicopter 

The mathematical model of the helicopter used in this 
study is similar to Sikorsky UH-60 Black Hawk. The 
model is based on a set of coupled nonlinear rotor- 
fuselage equations in first-order, state-space form, and 
the rigid-body dynamics of the helicopter are modeled 
using nonlinear Euler equations. The rotor model de- 
scribes the dynamics of eiich blade with rigid-body cou- 
pled flap, lag, and first torsion mode degrees of freedom. 
Main rotor inflow is calculated using a three-state dy- 
namic inflow model, which yields a linear inflow distri- 
bution over the rotor disk. For the tip loss, the outermost 
3% of the rotor blade is assumed to generate profile drag 
but not lift. A one-state dynamic inflow model is used 
for the tail rotor. All the results presented in this paper 
were obtained from a coupled rotor-fuselage trim proce- 
dure simulating free flight conditions. The trim proce- 
dure enforces force and ‘moment equilibrium about the 
body axes and periodicity of the rotor blade motion. Ad- 
ditional details of the mathematical model, including val- 
idation results, can be found in Refs. (4-6). 

Although the mathematical model is limited to rigid 
flap-lag and first torsion blade dynamics, quasi-steady 
compressible aerodynamics, linear inflow, and a straight 
tip, this level of sophistication is adequate to capture the 
first-order effects, but it may not be sufficient for accu- 
rate quantitative predictions such as vibratory hub loads. 

Effect of HHC Input on Traditional LTI Model 

As stated earlier, traditional Linear Time Invariant (LTI) 
model extraction techniques do not capture the higher 
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harmonic nature of helicopter vibrations. Traditional lin- 
earization techniques consist of perturbing each state and 
control about an equilibrium position. Using this ap- 
proach, the individual blade pitch is introduced in terms 
of the harmonics in the rotating frame. This method leads 
to systems of rotor equations containing periodic coeffi- 
cients, which are represented in the rotating frame. The 
transformation from the rotating frame to the fixed frame 
is accomplished using a multi-blade coordinate transfor- 
mation. To remove the time dependency, the linearized 
models are computed over one rotor revolution, with the 
equal rotor azimuth increments, and then averaged to ob- 
tain a LTI system in the fixed frame. As a consequence, 
this averaging eliminates the periodicity of the system 
and all the higher harmonics in both the controls and the 
rotor response. 

Figure 1 shows the effects of a 3/rev HHC input on 
hub loads, as they would be predicted by a traditional LTI 
model obtained through a MCT and subsequent averag- 
ing. For comparison, the figure also contains the results 
of a nonlinear simulation using the model described in 
the previous section. The 3/rev HHC input used in this 
figure demonstrates its effect on the hub loads, and that it 
is not the proper HHC input for vibration reduction. Two 
key observations can be obtained from this figure. The 
first is that before the application of the 3/rev control, a 
steady vibration level is evident in the nonlinear model 
responses, but not in the linear model responses. The 
second is that after the 3/rev control is applied, the vibra- 
tion level changes in the nonlinear model responses, but 
there is still no vibration in the linear model responses. 
Figure 2 shows the hub load time histories following a 
lateral doublet input (blat) with HHC-off. Here, both 
linear and nonlinear models capture the mean hub load 
changes resulting from the lateral doublet input, but the 
results with the linear model do not include the higher 
harmonic responses that are seen in the nonlinear model 
simulation results. Clearly, this linear model cannot pre- 
dict the higher harmonic behavior of hub loads. 

Harmonic Analyzer 

In wind tunnel and flight test (Ref. 7-10), a digital har- 
monic analyzer is used to extract hub load harmonics. 
A digital harmonic analyzer consists of applying a sam- 
ple window, Fast Fourier Transform (FIT) and a lowpass 
filter to the data. When performing harmonic analysis 
with a physical system, it is necessary to truncate a long 
data stream from the measured signals to a finite size by 
applying a sample window. The sample window essen- 
tially behaves l k e  a lowpass filter. As a result, the output 
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Figure 1: Hub loads comparison for the traditional linear 
model; HHC-on; V=120 kts (p=0.28), Weight= 14,000 
lb. 

of the harmonic analyzer contains little of the transient 
response, i.e., the application of windowing introduces a 
delay that masks the transient characteristics of the vibra- 
tory hub loads. For steady-state vibration suppression, 
this delay does not pose a problem. 

Another method of extrac1.ing n/rev hub load harmon- 
ics is the analog harmonic analyzer (Ref. 11-13). It ex- 
tracts the n/rev hub load harmonics using a bandpass fil- 
ter. Initially, this appears to be a superior method; it di- 
rectly provides a continuous sensor output without the 
impact on sampling time that is typically associated with 
FErs in real-time applications. However, it has major 
drawbacks. This method requires a high order bandpass 
filter with narrow passband width to extract the steady- 
state vibration value. Moreover, the bandpass filter does 
not extract the n/rev hub load harmonics (cosine and 
sine components) directly; it only extracts the amplitude 
of the n/rev hub loads. Additional real-time process- 
ing is required to obtain the n/rev hub load harmonics. 
These requirements add a large time delay and equiva- 
lent phase lag to the system, usually much larger than 
the one caused by the sample window implemented in 
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Figure 2: Hub loads comparison for the traditional lin- 
ear model; lateral doublet input; HHC-off; V=120 kts 
(p=0.28), Weight= 14,000 lb. 
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the digital harmonic analyzer. 
Once the hub load signal has been passed through the 

harmonic analyzer, the hub load harmonics are related 
to the HHC inputs using a transfer matrix controller (T- 
matrix) (Ref. 14). The HHC inputs are then computed 
and fed back to the rotor system for the vibration sup- 
pression as shown in Figure 3. There are two methods of 
capturing the periodic behavior of the helicopter as pm 
of a Linear Time Invariant (LTI) model: 

1. Add a LTI harmonic analyzer model in the feedback 
path of a LTI helicopter model 

2. Generate a LTI helicopter model with an embedded 
harmonic analyzer 

At a first glance, the first method appears to be the ob- 
vious choice, since it parallels the actual implementation 
of the real world case. If a LTI version of the harmonic 
analyzer is formulated, the HHC inputs will force the LTI 
helicopter model to respond at a 4/rev (4P) frequency for 
a 4-bladed helicopter. But, with the HHC feedback loops 
disengaged, the LTI helicopter model responses are lim- 

Harm c n k  Analyzer 

Figure 3: Closed-loop HHC vibration reduction scheme 

ited to the l/rev piloted input, and the LTI helicopter 
model does not exhibit an:y 4/rev behavior in either the 
rotor states or the hub loads. The effects of the AFCS 
on the vibratory hub loads (such as F ~ 4 ~ / 6 l ~ t  open-loop 
frequency responses) cannot be correctly represented by 
this LTI helicopter model. 

Based on the limitations of the first method, the sec- 
ond method, which is to generate a LTI state-space model 
that preserves the periodic characteristics (referred as the 
LTI-HHC model) was selected for implementation. In 
this method, the periodic portion of the harmonic ana- 
lyzer (Fourier analysis) is embedded within the LTI heli- 
copter model. The embedded harmonic analyzer extracts 
the cosine and sine components of each rotor state. By 
embedding the harmonic analyzer within the LTI heli- 
copter model and replacing the sample window with an 
equivalent lowpass filter, a closed-loop LTI-HHC system 
can be realized (Fig 4)., 

The state-space representation of the LTI-HHC model 
has the following form: 
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Figure 4: Analysis model of the closed-loop HHC vibra- 
tion reduction scheme 

where all the sub-matrices A,, and B,, of the state and 
control matrices, and the output equation matrices C2, 
and D,j, are time invariant. The x portion of the state 
vector contains the “averaged” components of the rotor 
and fuselage states, and hQp contains the harmonic ana- 
lyzer states. The u portion of the control vector contains 
the pilot and flight control system inputs, and UHHC 
contains the HHC inputs. In the present study, UHHC 
is assumed to be applied in the rotating system of a 4- 
bladed rotor, therefore it contains 3/,4/, 5Irev cosine and 
sine harmonics, for a total of 6 inputs. 

HHC Algorithm 

The closed-loop HHC algorithm implemented is based 
on the fixed-gain T-matrix feedback controller: 

z n  = Zn-1 + T(Bn - Qn-l) (3) 

where 2 is the response vector consisting of cosine and 
sine components of 4/rev vibratory hub loads (longitudi- 
nal, lateral, vertical hub shears plus pitching and rolling 
hub moments): 

and T is the Jacobian of f computed about a reference 
input, Bo: 

= f(Z0,Q) (4) 

R F I  
“ J  T =  
00 lon 

( 5 )  

The input vector B consists of the cosine and sine com- 
ponents of HHC inputs (3/rev, 4/rev, and 5/rev). Eq. ( 5 )  

assumes that the response to HHC input is linear over 
the entire range of control application. For vibration sup- 
pression, the optimal control is obtained by minimizing 
the cost function J :  

where Q and R are the weighting matrices on the re- 
sponses and controls: 

R = diag(1. 1. I .  1, 1. 1) (8) 

and q71. . ., 910 = where AzCg is the vertical dis- 
placement of the rotor hub to the center of gravity of the 
helicopter. The choice of the weighting transforms 
the moments to the equivalent forces. The optimal con- 
trol is computed by setting the first derivative of the cost 
function of Eq. (6) to zero and solving for the optimal 
HHC input: 

AZZ, 

n T  

UJ = (I 
d e  (9) 

With this scheme, the HHC input is computed based on 
the current response vector: 

where the psecdo-inverse T-matrix is: 

Equation (10) represents the HHC scheme applied in 
the discrete time domain. Its continuous time domain 
equivalent is simply an integrator, k/s, with a gain of k. 
Figures 5-7 illustrate the T-matrix vibration responses 
for 3, 4, and Strev inputs as nurnerically extracted from 
perturbing the nonlinear simulation with varying phase 
angles. The diamond symbol represents the baseline 
(HHC-off) 4/rev vibration responses from the nonlinear 
model, and their values are tabulated in Table 1. The 
open circles represent the vibration responses from the 
nonlinear model; the solid circles represent the extracted 
vibration responses from Eq. (3) with 8, determined 
from Eq. (IO).  The numbers next to the symbols are the 
n/rev input phase angles. From these figures, the error 
resulting from the T-matrix approximation can be ob- 
served. For the 3/rev case (Figure 5), the T-matrix re- 
sults match well with the nonlinear results. For the 4/rev 
and S/rev cases, there are larger differences between the 
two methods. This difference is caused by the assump- 
tion that the response to the HHC input is linear over the 
entire range of control application. 

235 



Table 1: Baseline (HHC-off) Vibration Level 
4P Cos-Cornp. 4P Sin-Comp. 

151.6 87.8 Fx (lb) 

39.5 8.9 Fz (lb) 
M X  (ft-lb) 40.1 62.6 
M y  (ft-lb) 80.0 30.2 
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Figure 5: Extracted T-matrix response for an HHC input 
of AJ = lo; V=120 kts (p=0.28), Weight=14,000 lb 
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Figure 6: Extracted T-matrix response for an HHC input 
of A4 = lo; V=120 kts (.p=0.28), Weight=14,000 lb 
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Figure 7: Extracted T-matrix response for an HHC input 
of As = lo; V=120 kts (p=0.28), Weight=14,000 lb 
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I 
Linear Model Validations 

The hub loads from the LTI-HHC model were validated 
against the nonlinear model results. Although the non- 
linear model may not be sufficient for accurate quantita- 
tive predictions of vibratory hub loads, it has an adequate 
level of sophistication to capture the first-order effects. 
The flight configurations chosen for validation are hover, 
40 kts, 80 kts, 120 kts, and 160 kts. The HHC input for 
these cases is a 3/rev input with amplitude of 1' at the 
0' phase angle. Only the 120 kts (/*=0.28) case results 
are presented in this paper. Figure 8 shows that when the 
HHC input (A3) is engaged, there is a little difference in 
hub load predictions between the LTI-HHC model and 
the nonlinear model. 

The main difference in hub loads predictions is in the 
higher frequency contents (8/rev and 12/rev) of the trans- 
lational hub loads (Fx, F y ,  Fz) .  A spectral analysis 
of the hub loads was,performed for both models with 
the HHC engaged. Figure 9 indicates that the nonlin- 
ear model has small 8/rev responses in all the transla- 
tional hub loads, which are not modeled by this LTI- 
"C model. This limitation can be overcome by includ- 
'ng additional harmonic analyzer states in the LTI-HHC 

I Nonlmear Model 
200 - - 7 = 1  

Fx 100 
(Ib) 

0 

200 

O 

F" 100 
(Ib) 

4P 8P 12P 16P 

0 
4P 8P 12P 16P 

0 

600 

(2) 300 

Figure 9: Hub load harmonic analysis; HHC on; V= 120 
kts (p=0.28), Weight=l4,000 Ib 

model. Similar conclusions can be drawn for the entire 
speed range. In terms of the 4/rev response, the LTI- 
HHC model is capable of producing results very close 
to those from the nonlinear model. The effects of piloted 
inputs on hub loads were also compared for both the non- 
linear and LTI-HHC models (Figure 10). Overall, the 
LTI-HHC model is capable of predicting the nonlinear 
behavior in each axis throughout the entire speed range. 
Most of the differences appear in the vertical force ( F z )  
and the pitching moment ( M y )  calculations. 

Effect of a fixed HHC Input on Rigid-Body 
Dynamics 

To understand the potential coupling between both con- 
trol systems, an analysis was first performed with the 
HHC loops disengaged to determine whether a fixed 
HHC input had any direct effect on the rigid-body dy- 
namics. First, the baseline (HHC-off) case of the LTI- 
HHC model was validated by comparing its frequency 
response against the flight test data. The frequency re- 
sponse of the nonlinear model, the LTI model and flight 
test are presented in Figure 1 1. The frequency response 
of the nonlinear model was obtained by performing fre- 
quency sweeps to extract the vehicle dynamics. The ve- 
hicle dynamics data were processed, and the frequency 
responses were identified using CIFER@(Ref. 15). All 
three cases agreed with each other in the frequency range 
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Figure 10: Validation of LTI-HHC model for lat- 
eral doublet input; HHC-off; V=120 kts (p=0.28), 
Weight=14,000 lb 

of 2-20 rad/sec. There were some small disagreementdin 
the frequency range of 1-2 rad/sec between the flight test 
result and the LTI-HHC model result. 

Figure 12 shows the effect of a fixed HHC input on 
the rigid-body dynamics. The LTI-HHC model result 
was obtained with the HHC loop engaged. The nonlin- 
ear result was obtained by performing frequency sweeps 
on the nonlinear model with an optimum 3/rev input en- 
gaged. This optimum input was calculated based on an s 

optimization procedure which minimized the hub shear. 
The figure indicates that the HHC input has no effect 
on the flight dynamics in the frequency range of interest 
for both models. The complete AFCS/"C closed-loop 
analysis and control law optimization are performed in 
the next section. 

Interaction of Automatic Flight Control and Higher 
Harmonic Control 

A SIMULINKB simulation of the integrated flight and 
higher harmonic control system was developed for anal- 
ysis and optimization in the Control Designers Unified 
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Figure 1 1 : Linear model validation, baseline (HHC-off) 
case 
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Figure 12: Effect of HHC input on rigid body dynamics 
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Interface (CONDUIT@, Ref. 16). The key elements of 
the simulation are: 

1. Higher-order linear airframe model (described 
above) that provides the flight mechanics and 4/rev 
vibration responses to both pilot and HHC inputs. 

2. Automatic Flight Control System (AFCS) loops 
based on a simple proportional/integral/derivative 
(PID) controller in roll, pitch, and yaw to pro- 
vide satisfactory attitude command/attitude hold 
handling-qualities. 

3. Typical actuator/sensor filter dynamics 

4. Higher harmonic control loops based on fixed T -  
matrix feedback. 

First, CONDUIT was used to optimize the PID gains 
of the AFCS, with the HHC loops disengaged (Fig- 
ure 13). The PID gains were tuned to achieve satisfac- 
tory handling-qualities, based on the Aeronautical De- 
sign Standard (ADS-33E, Ref. 3), and standard control- 
system design metrics: 

(a) Crossover frequency (CrsMnG 1, CrslnG1) 

(b) Eigenvalue real part (EigLcG1) 

(c) Stability margins (StbMgG1) 

(d) Bandwidth (BnwRoF3) 

(e) Step response damping ratio (OvsAtH1) 

(f) Eigenvalue damping ratio (EigDgGl) 

(g) Step response rise time (RisTmG1) 

CONDUIT rapidly tuned the PID gains to achieve sat- 
isfactory (Level 1) requirements with minimum over- 
design as shown in Fig 14. Each symbol represents the 
result for a particular loop and shows that all the re- 
sponses lie in the light region (Level 1). For example, 
note that the roll bandwidth is 3 rad/sec (Fig. 14e), which 
meets ADS-33E. The PID gains of the roll and yaw loops 
yield bandwidths in excess of the requirement in order to 
meet some of the other specifications. 

Next, the T-matrix HHC loops were engaged with a 
nominal gain of k=l (same in all six loops), which cor- 
responds to a crossover frequency, wc, of approximately 
1 rad/sec (Fig. 15). The closing of the HHC loops had 
a negligible effect on the AFCS performance and overall 
handling-qualities, indicating the lack of dynamic cou- 
pling of HHC into flight control. Therefore, no re-tuning 
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Figure 13: HHC/AFCS simulation diagram (Only the 
3/rev inputs shown for clarity) 

of the AFCS was needed for the combined AFCS/"C 
system. The lack of interaction from HHC to flight con- 
trol is consistent with the earlier system identification 
results obtained from the nonlinear simulation, which 
(Fig 12) showed no effect of an HHC frequency-sweep 
on the rigid-body dynamic sesponse. 

While the impact of HHC on handling-qualities is neg- 
ligible, there is a significant vibration response to piloted 
inputs, both in the case of baseline (HHC-off) and with 
the nominal (IC=l) HHC loop engaged. With the baseline 
case (HHC-off), Fig 16 shows that for a -SOo roll rnaneu- 
ver (moderate), there is a maximum transient peak exci- 
tation of 150 lb addition to the trim vibration level in the 
F x . ~ ~  channel. This is roughly a doubling of the baseline 
trim vibration level (Table 1). With the nominal T-matrix 
controller (k=l) engaged, the maximum F , Y ~ ~  vibration 
transient increases to 163 Ib. which is 9% higher than the 
baseline case (HHC-off). In other words, with the nom- 
inal T-matrix controller engaged ( IC= l), the transient vi- 
bration response during maneuvering flight reaches sim- 
ilar levels to the trim condition with HHC-off. Never- 
theless, the nominal T-matrix controller is able to reduce 
the transient load back to lower levels faster than baseline 
case after the 3-second point. Clearly, the vibration re- 
sponse to maneuvers must be considered in the design of 
the HHC system. Since, in this case, the fixed T-matrix 
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0 10 20 
GM[db] Real Axis 

is a close linear model of the nonlinear simulation dy- 
namics, it represents a hest case scenario for the perfor- 
mance with an adaptive T-matrix HHC system. 

An analysis and optimization of the HHC loops (k=l)  
was conducted next in CONDUIT, with the AFCS gains 
fixed at their optimized values. The key specifications 
included in the analysis were HHC loop stability mar- 
gins and vibration suppression performance. Gain and 
phase stability margins were determined for each of the 
six broken control loops (3/rev-sine, 3/rev-cosine, 4/rev- 
sine, 4/rev-cosine, 5/rev-sine, S/rev-cosine). Figure 13 
illustrates this HHC/A€;CS simulation scheme. The bro- 
ken control loop response is a method of studying loop 
stability. Using 03, broken-loop as an example, it is the 
response of BJc at point B (in Fig 13) with respect to the 
03, input at point A while only switch 1 (Swl in Fig 13) 
is in the open position. 

For steady-state vibration suppression, the helicopter 
vibration model (UH-60 in Figure 13) can be represented 
with a T-matrix which is a linear approximation of the 
vibration response to the HHC inputs at a steady-state 
condition. In other words, the T-matrix corresponds to 
the linear state-space model at DC gain (DC Gain is the 
ratio of the output/input signal at the steady-state con- 
dition) to within the accuracy of the linear model ex- 
traction process. The nominal T-matrix controller (HHC 
Controller in Figure 13) is simply a k / s  diagonal corn- 
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Figure 16: F.ydC vibration response in rolling maneuver- 
ing flight, T-matrix controller, nominal case (k=l) 

Figure 17: FxdC unit pulse response; T-matrix con- 
troller, k=l and 2 

pensator multiplied by the pseudo-inverse (Tt) of the 
steady-state response to HHC inputs. The broken-loop 
response matrix (k/s) Tt T will thus be a nearly di- 
agonal matrix of k/s responses. This corresponds to 
single-input/single-output loop and without loop interac- 
tions (e.g., no response of the 3s loop to 3c transients). 
Assuming a nominal gain of k = l ,  this ideal approxima- 
tion gives loop crossover frequencies of wc=l rad/sec, 
90" phase margin, and infinite gain margin in every loop 
as illustrated in Fig 15. 

Next, the helicopter vibration model is replaced with 
the LTI-HHC model. The actual broken-loop response 
for the 3/rev-cosine loop shown in Fig 15 confirms that 
the k / s  approximation is quite accurate for frequencies 
of up to about the 1 rad/sec crossover frequency. There 
is a gain offset associated with the deviation between the 
steady response of the nonlinear simulation ( T )  and the 
steady-state response of the linearized model. So, the 
actual crossover frequency is 0.72 rad/sec, with a phase 
margin and gain margin of 77' and 19 dB, respectively. 
For frequencies above 1 rad/sec, there is significant devi- 
ation from the l /s  ideal response, especially in phase due 
to the dynamics of the 4/rev vibration response relative 
to the simple steady-state approximation (T). 

The response of the HHC loop for k=l to a unit 
pulse input in vibration is shown in Fig 17 to be well 
damped. Increasing the HHC feedback gain (k=2), 
raises the broken-loop crossover frequency and raises 
the closed-loop HHC disturbance rejection bandwidth 
(Fig 18). There is an associated reduction in the closed- 
loop transient settling time, as was also concluded by 
Shin et al. (Ref. 17). But, there is also a magnification 
of the peak disturbance at frequencies above crossover 
(Fig 18) which is consistent with classical control theory, 

Table 2: Vibration RMS with respect to piloted roll input; 
Normalized relative to maneuvering with' HHC-off 

Nominal T-matrix Optimized Controller 
(k=l) (Lead-Lag) 

Fx4c -4.1 % -41.8% 
Fx4s 1.7% -15.3% 
FY4c 19.7% -0.52% 
F Y  49 13.6% -62.6% 
Average 7.7% -30.0% 

and which shows up in the time-domain as well (Fig 17). 
The performance of the HHC system in suppressing 

the vibration response to piloted inputs is reflected in the 
frequency-responses: F ~ 4 c l b ~ a t  F X ~ ~  /bLat, F ~ 4 ~ / b i ~ ~ ,  
etc. The RMS, determined from the integral under the 
frequency-response squared functions, is a useful mea- 
sure of the vibration response to broadband piloted inputs 
for different HHC system designs. The spectral integra- 
tion to determine the RMS is conducted up to a frequency 
of 3 rad/sec. The 3 rad/sec cut-off corresponds to the roll 
command bandwidth and is a good estimate of the max- 
imum closed-loop piloting frequency. Finally, the RMS 
levels were normalized using the baseline (HHC-off) vi- 
bration RMS for the roll maneuver to show the relative 
improvement (or degradation) in vibration suppression 
by the HHC system. 

For a nominal T-matrix controller, k= 1, the average 
vibration in maneuvering flight is 7.7% above the base- 
line case (Table 2). This matches the time response com- 
parison of Fig 16, and it shows again that the nominal 
T-matrix controller is ineffective for vibration suppres- 
sion during maneuvers. Analyses with CONDUIT show 
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Figure 18: Broken-loop response of 3/rev input; T-  
matrix controller, k= I and 2 

that an improvement in the suppression of vibration tran- 
sients during the roll maneuever input can only achieved 
by increasing the HHC crossover frequency to a value 
that is close to the 3 rad/sec piloted bandwidth. At this 
increased crossover frequency, the use of the ste_ady-state 
( T )  approximation is unacceptable for controller opti- 
mization and analysis (Fig 15), and the complete dy- 
namic model developed earlier is required. Further, the 
simple k / s  controller architecture must be augmented 
with the addition of a 2nd-order lead-lag compensation 
in each loop to achieve the needed stability margins. The 
HHC feedback controller now takes the form: 

Each HHC control loop contains 5 design parame- 
ters, and the same controller is used for the cosine and 
sine loops of a particular harmonic. Thus, for the three 
harmonics (6 loops), there are 15 HHC feedback pa- 
rameters in total. As an illustration, CONDUIT was 
used to tune these parameters to minimize the sum of 
the normalized vibration RMS values for the four in- 
plane shears to a lateral input F . ~ 4 ~ / b l ~ ~ ,  
Fy4J6iatr F~4s/blat) .  The optimized results are pre- 
sented in Table 2. The RMS vibration shears are reduced 
by 30% compared to the baseline (HHC-off) case and 
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Figure 19: Broken-loop response of 3/rev input; opti- 
mized HHC system 

35% compared to the nominal T-matrix controller (k=l) 
case. This is achieved by increasing the crossover fre- 
quencies to their maximum values (e.g.. w, = 2.8 rad/sec 
in the 3/rev loops) while still maintaining adequate sta- 
bility margins (Fig 19). 

The transient response of the optimized controller is 
compared to the baseline case in Fig 20 for the roll ma- 
neuver. The peak vibration is now 103 lb, or 3 l % below 
the baseline result, which again tracks the frequency- 
domain results of Table 2 closely. We can clearly see 
that the optimized controller has achieved performance 
superior to that of the baseline (HHC-off) and nominal 
T-matrix controller cases. 

Conclusions 

This paper illustrates a new methodology for the deriva- 
tion of linearized, time invariant, state-space models of 
a helicopter, and uses this new model to study the inter- 
actions of HHC and AFCS. The LTI-HHC model, de- 
veloped herein, captures the periodic characteristics Of 

the helicopter by embedding the Fourier analysis of the 
harmonic analyzer within the plant model. The sample 
window within the harmonic analyzer is modeled using a 
simple lowpass filter and implemented in the HHC feed- 
back path. Using this new analysis, the hub loads of the 
LTI-HHC model match the hub loads of the nonlinear 

! 
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ing flight; optimized HHC system 

i l 

model well for both HHC inputs and piloted inputs. This 
is an important result, since the traditional linearization 
method with averaging removes the periodicity of the 
response and, therefore, cannot be used to model rotor 
vibrations. One limitation of the LTI-HHC model de- 
scribed in this paper is that it can model only the 4/rev 
components of the harmonic analyzer states and not the 
higher frequency content (8/rev and 12/rev, etc.) of the 
nonlinear model. This limitation can be overcome, how- 
ever, by including additional harmonic analyzer states 
in the LTI-HHC model. The LTI-HHC model was in- 
tegrated with the flight and higher harmonic control sys- 
tem in SIMULINKB, and a complete AFCS/”C loop 
analysis and control law optimization were performed in 

i 
l 

/ 

CONDUIT@. 
The main conclusions of the present study are: 

1. The closed-loop HHC system has little influence on 
flight controlhandling-qualities. 

2. Vibration response to maneuver inputs must be con- 
sidered as part of the HHC system design pro- 
cess, and it will lead to much higher required loop 
crossover frequencies. 

3. The nominal T-matrix controller (typical controller 
gain of k l )  does not provide additional vibration 
benefit over the baseline (HHC-off) case in a ma- 
neuvering flight. , 

4. Increasing the T-matrix controller feedback gain 
(k=2) reduces the closed-loop transient settling 
time, but it increases the magnitude of the peak dis- 
turbance at frequencies above crossover frequency. 

5.  For the same maneuvering flight, the optimized 
HHC system reduces vibratory shears by 30% com- 
pared to the baseline case and 35% compared to 
nominal T-matrix controller case. 

References 

(1) Friedmann, P. P., and Millot, T. A., “Vibration 
Reduction in Rotorcraft Using Active Control: A 
Comparison of Various Approaches,” Journal of 
Guidance, Control, and Dynamics, Vol. 18, (41, 
July-August 1995. 

(2) Teves, D., Niesl, G., Blaas, A., and Jacklin, S., “The 
Role of Active Control in Future Rotorcraft,” 21st 
European Rotorcraft Forum, Saint Petersburg, Rus- 
sia, September 1995. 

(3) Anon., “Handling Qualities Requjrements for Mil- 
itary Rotorcraft,” Aeronautical Design Standard-33 
(ADS-33E-PRF), US Army Aviation and Missile 
Command, March 2 1,2000. 

(4) Kim, ED., Celi, R., and Tischler, M.B., “High Or- 
der State Space Simulation Models of Helicopter 
Flight Mechanics,” Journal of the American Heli- 
copter Society, Vol. 38, ( 2 ) ,  October 1993. 

( 5 )  Kim, ED., Celi, R., and Tischler, M.B., “For- 
ward Flight Trim Calculation and Frequency Re- 
sponse validation of a High-Order Helicopter Sim- 
ulation Model,” Journal of Aircraft, Vol. 30, (6), 
November-December 1993. 

(6) Theodore, C., and Celi, R., “Helicopter Flight Dy- 
namic Simulation with Refined Aerodynamic and 
Flexible Blade Modeling,” Journal of Aircraft, Vol. 
39, NO. 4, July-August 2002. 

(7) Jacklin, S. A., Nguyen, K. Q., Blaas, A., Richter, 
P., “Full-Scale Wind Tunnel Test of a Helicopter 
Individual Blade Control System,” Proceedings of 
the 50th Annual Forum of the American Helicopter 
Society, May 1994. 

(8) Arnold, U. T. P., Strecker, G., “Certification, 
Ground and Flight Testing of an Experimental IBC 
System for the CH-53G Helicopter,” Proceedings 
of the 58th Annual Forum of the American Heli- 
copter Society, June 2002. 

(9) Nguyen, K. Q., Chopra, I., “Application of Higher 
Harmonic Control to Rotor Operating at High 

243 



Speed and Thrust,” Journal of the American Heli- 
copter Society, Vol. 35, (3), July 1990. 

Nguyen, K. Q., Betzina, M., Kitaplioglu, C.,“Full- 
Scale Demonstration of Higher Harmonic Control 
for Noise and Vibration Reduction on the XV-15 
Rotor,” Proceedings of the 56th Annual Forum of 
the American Helicopter Society, May 2000. 

Wood, E. R., Powers, R. W., Cline, J. H., “On 
Developing and Flight Testing a Higher Harmonic 
Control System,” Journal of the American Heli- 
copter Society, Vol. 30, (I), 1985. 

(12) Hammond, C. E., “Wind Tunnel Results Show- 
ing Rotor Vibratory Loads Reduction Using Higher 
Harmonic Blade Pitch,” Journal of the American 
Helicopter Society, Vol. 28, (l), 1983. 

(13) Shaw, J., Albion, N., Hanker, E. J., Jr., and Teal, 
R. S. ,  “Higher Harmonic Control: Wind Tunnel 
Demonstration of Fully Effective Vibratory Hub 
Force Suppression,” Journal of the American He- 
licopter Society, Vol. 34, (I), 1989. 

(14) Nguyen, K. Q., and Chopra, I., “Effects of Higher 
Harmonic Control on Rotor Performance and Con- 
trol Loads,” Journal of Aircraft, Vol. 29, (3), May- 
June 1992. 

(15) Tischler, M.B. , and Cauffman, M.G., ”Frequensy- 
Response Method for Rotorcraft System Identifica- 
tion: Flight Applications to BO-105 Coupled Ro- 
tor/Fuselage Dynamics,” Journal of the American 
Helicopter Society, Vol31, No 3, July 1992. 

(16) Tischler, M. B., et al, “A Multidisciplinary Flight 
Control Development Environment and Its Appli- 
cation to a Helicopter,” IEEE Control Systems Mag- 
azine, Vol. 19, No. 4, August 1999. 

(17) Shin, S .  J., Cesnik, C. E. S., and Hall, S .  R., “Con- 
trol of Integral Twist-Actuated Helicopter Blades 
for Vibration Reduction,” Proceedings of the 58th 
Annual Forum of the American Helicopter Society, 
June 2002. 

244 

AB! 

Act: 
beci 
wei: 
supc 
ada] 
Thi: 

syst 
Adt 
Aer 
dew 
ider 
tran 
at v 
stag 
defi 
(act 
the 
and 
Thi. 
con 
con 
con 
Acc 
den 
nun 

1. E 

The 
uns 
blac 

con‘ 

Pre: 
For, 
Hell 


